1. Let \mathbf{L}, \mathbf{A} be some fixed vectors in \mathbf{R}^{3}, and $\mu=\mathbf{L} \cdot \mathbf{A}$. For vector variable $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}$, let us consider the system of equations

$$
\mathbf{L} \cdot \mathbf{x}=\mu r, \quad r-\mathbf{A} \cdot \mathbf{x}=L^{2}-\mu^{2}
$$

where r is the length of \mathbf{x}, and L is the length of \mathbf{L}. Assume that \mathbf{L} is a none-zero vector.
(i) Show that this system of equations determines a conic.
(ii) Find the eccentricity of this conic in terms of \mathbf{L} and \mathbf{A}.
2. On the Lorentzian vector space $\mathbf{R}^{1,3}:=\left(\mathbf{R}^{4}, \cdot\right)$, the Lorentzian dot product • is given by formula

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right]^{T} \cdot\left[y_{0}, y_{1}, y_{2}, y_{3}\right]^{T}=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}
$$

Show that, if e is a time-like unit vector (i.e., $e \cdot e=1$), then formula

$$
\langle x, y\rangle:=2(x \cdot e)(y \cdot e)-x \cdot y
$$

defines an inner product on \mathbf{R}^{4}. In particular, if $e=e_{0}:=[1,0,0,0]^{T}$, we have

$$
\left\langle\left[x_{0}, x_{1}, x_{2}, x_{3}\right]^{T} \cdot,\left[y_{0}, y_{1}, y_{2}, y_{3}\right]^{T}\right\rangle=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

3. Let l, a be some fixed 4-dimensional Lorentz vectors such that $l \cdot l=-1, l \cdot a=0$, and $a_{0}>0$. Here a_{0} denotes the temporal component of a.
(i) Show that the intersection of the plane

$$
l \cdot x=0, \quad a \cdot x=1
$$

with the future light cone

$$
x \cdot x=0, \quad x_{0}>0
$$

is a conic.
(ii) Show that this conic is an eclipse, a parabola, or a branch of a hyperbola according as $a \cdot a$ is positive, zero and negative.
4. Let $\mathrm{H}_{n}(\mathbf{C})$ be the set of complex hermitian matrices of order n, \mathbf{C}_{*}^{n} be the set of non-zero column matrices with n complex entries. Consider the map

$$
q: \quad \mathbf{C}_{*}^{n} \rightarrow \mathrm{H}_{n}(\mathbf{C})
$$

which maps $z \in \mathbf{C}_{*}^{n}$ to $\bar{z}^{T} z$. Here T stands for transpose and \bar{z} is the complex conjugation of z.
(i) Show that the image of $q, \operatorname{Im} q$, is precisely the set of rank one, semi-positive hermitian matrices of order n. Let us denote this set by \mathcal{C}_{1}.
(ii) Let $\mathbf{C} P^{k}$ denote the set of 1-dimensional complex vector subspaces of the complex vector space \mathbf{C}^{k+1}. For matrix A, we use $\operatorname{tr} A$ to denote the trace of A and $\operatorname{Col} A$ to denote the column space of A. Show that the map

$$
\mathcal{C}_{1} \rightarrow(0, \infty) \times \mathbf{C} P^{n-1}
$$

which maps $x \in \mathcal{C}_{1}$ to $(\operatorname{tr} x, \operatorname{Col} x)$ is a bijection.
(iii) Show that $\mathrm{H}_{n}(\mathbf{C})$ is a real vector space. (So it can be viewed as a real affine space with the same dimension.)
(iv) For any smooth map $\alpha: I \rightarrow \mathrm{H}_{n}(\mathbf{C})$ where I is an open interval containing 0 , if the image of α is inside \mathcal{C}_{1}, we say that α is a smooth parametrized curve on \mathcal{C}_{1}, passing through point $\alpha(0)$. Show that, for any $x \in \mathcal{C}_{1}$, the image of L_{x} (the Jordan multiplication by x), $\operatorname{Im} L_{x}$, can be described this way: $u \in \operatorname{Im} L_{x}$ if and only if $u=\alpha^{\prime}(0)$ for some smooth parametrized curve α on \mathcal{C}_{1}, passing through point x. (In case you know that \mathcal{C}_{1} is a smooth manifold, this proves that the tangent space of \mathcal{C}_{1} at point x is $\{x\} \times \operatorname{Im} L_{x}$.)

