1. Let **L**, **A** be some fixed vectors in \mathbf{R}^3 , and $\mu = \mathbf{L} \cdot \mathbf{A}$. For vector variable $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3$, let us consider the system of equations

$$\mathbf{L} \cdot \mathbf{x} = \mu r, \quad r - \mathbf{A} \cdot \mathbf{x} = L^2 - \mu^2$$

where r is the length of \mathbf{x} , and L is the length of \mathbf{L} . Assume that \mathbf{L} is a none-zero vector.

(i) Show that this system of equations determines a conic.

(ii) Find the eccentricity of this conic in terms of L and A.

2. On the Lorentzian vector space $\mathbf{R}^{1,3} := (\mathbf{R}^4, \cdot)$, the Lorentzian dot product \cdot is given by formula

$$[x_0, x_1, x_2, x_3]^T \cdot [y_0, y_1, y_2, y_3]^T = x_0 y_0 - x_1 y_1 - x_2 y_2 - x_3 y_3$$

Show that, if e is a time-like unit vector (i.e., $e \cdot e = 1$), then formula

$$\langle x, y \rangle := 2(x \cdot e)(y \cdot e) - x \cdot y$$

defines an inner product on \mathbf{R}^4 . In particular, if $e = e_0 := [1, 0, 0, 0]^T$, we have

$$\langle [x_0, x_1, x_2, x_3]^T \cdot, [y_0, y_1, y_2, y_3]^T \rangle = x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3$$

3. Let l, a be some fixed 4-dimensional Lorentz vectors such that $l \cdot l = -1$, $l \cdot a = 0$, and $a_0 > 0$. Here a_0 denotes the temporal component of a.

(i) Show that the intersection of the plane

$$l \cdot x = 0, \quad a \cdot x = 1$$

with the future light cone

$$x \cdot x = 0, \quad x_0 > 0$$

is a conic.

(ii) Show that this conic is an eclipse, a parabola, or a branch of a hyperbola according as $a \cdot a$ is positive, zero and negative.

4. Let $H_n(\mathbf{C})$ be the set of complex hermitian matrices of order n, \mathbf{C}^n_* be the set of non-zero column matrices with n complex entries. Consider the map

$$q: \mathbf{C}^n_* \to \mathrm{H}_n(\mathbf{C})$$

which maps $z \in \mathbf{C}^n_*$ to $\bar{z}^T z$. Here T stands for transpose and \bar{z} is the complex conjugation of z.

(i) Show that the image of q, Im q, is precisely the set of rank one, semi-positive hermitian matrices of order n. Let us denote this set by C_1 .

(ii) Let $\mathbb{C}P^k$ denote the set of 1-dimensional complex vector subspaces of the complex vector space \mathbb{C}^{k+1} . For matrix A, we use tr A to denote the trace of A and Col A to denote the column space of A. Show that the map

$$\mathcal{C}_1 \to (0,\infty) \times \mathbb{C}P^{n-1}$$

which maps $x \in C_1$ to $(\operatorname{tr} x, \operatorname{Col} x)$ is a bijection.

(iii) Show that $H_n(\mathbf{C})$ is a real vector space. (So it can be viewed as a real affine space with the same dimension.)

(iv) For any smooth map $\alpha: I \to H_n(\mathbb{C})$ where I is an open interval containing 0, if the image of α is inside \mathcal{C}_1 , we say that α is a smooth parametrized curve on \mathcal{C}_1 , passing through point $\alpha(0)$. Show that, for any $x \in \mathcal{C}_1$, the image of L_x (the Jordan multiplication by x), Im L_x , can be described this way: $u \in \text{Im } L_x$ if and only if $u = \alpha'(0)$ for some smooth parametrized curve α on \mathcal{C}_1 , passing through point x. (In case you know that \mathcal{C}_1 is a smooth manifold, this proves that the tangent space of \mathcal{C}_1 at point x is $\{x\} \times \text{Im } L_x$.)